Static In-Plane Shear Test

Material Properties of CFRTP Strand

Material	Specific gravity	The tensile modulus	110Gpa
	(kg/mm ²)	Cross section	24mm ²
CFRTP starand	0.068	The number of twists	7
Reinforcing steel	1.58	Diameter	6mm
(D16)		(per 1)	(2mm)

The Structure of Edge of the CFRTP Strand (1)Bonding method of stainless bolts

Brittle fracture at 20kN and over

The Outline of Specimen

Repetition History

Shear deformation angle (rad)

Oil jack

Shear Force-Shear Deformation Angle Relationship (910-1,2,3)

Axial Force of CFRTP Strand-Shear Deformation Angle Relationship

Column

(Oak)

CFRTP socket

Fixing of Corbels and Torque value

• Fixing of corbels The corbel was fixed with screws at *4 locations*

25mm Bis(90mm) Corbel

CFRTP socket

40mm

 Torque value *Torque value is 2Nm when CFRTP strand is stretched tight.*

Hardware

15kN

(Middle corner)

Torque

value

(Nm)

10

Shear force (kN) $-CFRTP strand(6\phi)$ Shear deformation angle (rad) 0.04 0.06 0.08 0.02

Shear Force-Shear Deformation Angle Relationship

(CFRTP strand and Steel brace)

(910-3)

•*CFRTP strand showed ductility* capacity when shear deformation angle was 1/10rad.

• Structural performance is different depending on how to fix Corbels and *torque value*

•Axial force of CFRTP strand is 7.8kN at first yield and 14kN when shear deformation angle was 1/10rad

Mechanism of Shear Deformation of Specimen 910-3 when Shear Deformation Angle was 1/10rad

shear deformation

Whole Shear Deformation (84%)

X the value in () is the ratio of shear displacement of each factor to actual total deformation.

Axis Deformation of CFRTP Strand (18.0%)

It was calculated by multiplying the strain measured by the strain gauge attached to the CFRTP strand by the cross-sectional area by tensile

Moving of the Corbel

Rotational Deformation of the Timber (23.7%)

It was calculated by displacement meter.

Conclusion

Foundation

In this study, we examined the adaptation of CFRTP strands to seismic retrofitting of wooden buildings.

Walls reinforced with steel braces break when the shear deformation angle is 1/60 rad. On the other hand, it was confirmed that the wall reinforced with CFRTP strands did not undergo brittle fracture until the shear deformation angle became 1/10 rad.

 \rightarrow It was a useful result for seismic retrofitting of traditional wooden buildings that require deformation performance of 1/30 rad to 1/15 rad against extremely rare earthquakes.

Embedment of CFRTP Strand

0.1

It was calculated geometrically

(11.4%)

Fall out CFRTP socket (30.9%)

It was measured CFRTP socket after the test.

CFRTP socket

STRUCTURAL PERFORMANCE EVALUATION OF WOODEN FRAME WITH CFRTP REINFORCEMENT

• Hina Takizawa, (Toyo Univ). Hiroki Matsumoto, (Kanazawa Inst. Tech). Nobuji Sakurai, (Nose Structual Engineering)

Kiyoshi Uzawa, (Kanazawa Inst. Tech). Yuya Takaiwa, (Toyo Univ).